Trigonometry ($1 / 5$): Introduction and Overview

Introduction to Engineering Mathematics

Prof. Joris Vankerschaver

Contents

(1) Angles and points on the unit circle
(2) Trigonometric functions as coordinates
(3) Basic trigonometric identities

The unit circle

- The circle of radius 1 in the $x y$-plane, centered on the origin.
- Equation: $x^{2}+y^{2}=1$
- Four quadrants: $I, I I, I I I, I V$

Example

If $P(\sqrt{3} / 2, y)$ is a point on the unit circle, find the value of y.

Angles and points on the unit circle

- Each point $P(x, y)$ defines an angle θ measured from the positive x-axis in counterclockwise direction.
- Angles measured in degrees or radians.
- Value of θ in radians: length of arc subtended by θ (length of the red segment)

Converting between angles and radians

General formula to convert between degrees and radians:

$$
\text { degrees } \underset{\times \frac{180}{\pi}}{\stackrel{\times \frac{\pi}{180}}{\rightleftarrows}} \text { radians }
$$

	Degrees	Radians
Full circle	360°	2π
Half circle	180°	π
Quarter circle	90°	$\pi / 2$

Negative angles

Measured from the positive x-axis, in clockwise direction.

Adding 2π to an angle

- Point P is determined by the angle θ.
- P stays same when adding $\pm 2 \pi$ to θ.
\Rightarrow All angles $\theta+2 k \pi$ with $k \in \mathbb{Z}$ give the same point P.
Principal angle: θ such that $-\pi<\theta \leq \pi$.

Finding the coordinates of a point

Given an angle θ, find the coordinates of $P(x, y)$.
(1) $\theta=\pi / 2$
(2) $\theta=3 \pi$
(3) $\theta=-\pi / 2$

Finding the coordinates of a point
Slightly more involved case:
(4) $\theta=\pi / 4$

Important angles

Angle	x-coordinate	y-coordinate
0	1	0
$\pi / 6$	$\sqrt{3} / 2$	$1 / 2$
$\pi / 4$	$\sqrt{2} / 2$	$\sqrt{2} / 2$
$\pi / 3$	$1 / 2$	$\sqrt{3} / 2$
$\pi / 2$	0	1
π	-1	0
2π	1	0

Trigonometric functions as coordinates

Let θ be an angle with point $P(x, y)$.

Name	Notation	Definition
Cosine	$\cos \theta$	x
Sine	$\sin \theta$	y
Tangent	$\tan \theta$	$\frac{\sin \theta}{\cos \theta}$
Cotangent	$\cot \theta$	$\frac{\cos \theta}{\sin \theta}$
Cosecant	$\csc \theta$	$\frac{1}{\sin \theta}$
Secant	$\sec \theta$	$\frac{1}{\cos \theta}$

Example

Given that $\theta=\frac{\pi}{6}$, find the values of all 6 trigonometric functions.

Fundamental identity

- $P(x, y)$ is on the unit circle: $x^{2}+y^{2}=1$
- Put $x=\cos \theta$ and $y=\sin \theta$ to obtain the fundamental identity:

Aside: notation

Be very careful when you see $\sin ^{k} \theta$.

- Positive exponent (power):

$$
\sin ^{k} \theta=(\sin \theta)^{k}
$$

- Negative exponent -1 (inverse function):

$$
\sin ^{-1} y=\arcsin y
$$

Fundamental identity: consequences

$$
1+\tan ^{2} \theta=\sec ^{2} \theta \quad 1+\cot ^{2} \theta=\csc ^{2} \theta
$$

Example

Suppose $\cos \theta=-\frac{4}{5}$ and θ is in quadrant III. Find $\sin \theta$ and $\tan \theta$.

Periodicity of sine and cosine

- Sine and cosine are 2π-periodic:

$$
\begin{aligned}
& \sin (\theta \pm 2 \pi)=\sin \theta \\
& \cos (\theta \pm 2 \pi)=\cos \theta
\end{aligned}
$$

- The tangent is π-periodic:

$$
\tan (\theta \pm \pi)=\tan \theta
$$

Example: Compute $\tan \left(\frac{8093 \pi}{4}\right)$

