Trigonometry (3/5): Geometry of Triangles

Introduction to Engineering Mathematics

Prof. Joris Vankerschaver

Overview

(1) Trigonometry in right-angled triangles
(2) Trigonometry in arbitrary triangles

- Law of sines
- Law of cosines
- Law of tangents
(3) Formulas for area and perimeter
(4) Height and distance problems

Terminology

Right-angled

Obtuse

Acute

Different kinds of triangles:

- Right-angled: one angle exactly 90°
- Obtuse: one angle greater than 90°

- Acute: all angles less than 90°

Trigonometry in right-angled triangles

Example

Find $\sin \alpha, \cos \alpha, \tan \alpha$.

Example

A student sees the top of the Posco tower in central Songdo under an angle of 30°. Knowing that the Posco tower is approximately 300 m tall, how far away is the student from the base of the tower?

Trigonometry in general triangles: law of sines

Formulas:

$$
\frac{\sin \alpha}{a}=\frac{\sin \beta}{b}=\frac{\sin \gamma}{c}
$$

Useful when you know

- 2 angles +1 side, or
- 1 angle +2 sides

and want to know the others.

Example

Find a and b.

Ambiguous cases $(1 / 3)$

Find the angle γ.

Ambiguous cases $(2 / 3)$

Find the angle α.

Ambiguous cases (3/3)

Given a triangle with angle $\alpha=42^{\circ}$ and sides $a=70$ and $b=112$.
Find the angle β.

Trigonometry in general triangles: law of cosines

Formulas:

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos \alpha \\
& b^{2}=a^{2}+c^{2}-2 a c \cos \beta \\
& c^{2}=a^{2}+b^{2}-2 a b \cos \gamma
\end{aligned}
$$

Useful when you know

- 2 sides +1 angle in between, or
- 3 sides
and want to know the other side/angles.

Example

Find the angles α, β, and γ.

Example

Find the angle α.

Example

If the ratio of the sides of a triangle is $a: b: c=4: 5: 6$, prove that the greatest angle is twice the smallest angle.

Semi-perimeter formulas

- Express \sin / \cos as a function of the sides + semi-perimeter.
- Semi-perimeter: half ("semi") of the circumference ("perimeter")
- You don't have to memorize these formulas, but you should know they exist.

$$
\begin{aligned}
& \sin \frac{\alpha}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}} \\
& \sin \frac{\beta}{2}=\sqrt{\frac{(s-a)(s-c)}{a c}} \\
& \sin \frac{\gamma}{2}=\sqrt{\frac{(s-a)(s-b)}{a b}}
\end{aligned}
$$

$$
\begin{aligned}
& \cos \frac{\alpha}{2}=\sqrt{\frac{s(s-a)}{b c}} \\
& \cos \frac{\beta}{2}=\sqrt{\frac{s(s-b)}{a c}} \\
& \cos \frac{\gamma}{2}=\sqrt{\frac{s(s-c)}{a b}}
\end{aligned}
$$

Formula for the area: Heron's formula

- Expresses area as a function of the lengths of the sides

$$
\text { Area }=\sqrt{s(s-a)(s-b)(s-c)}
$$

- Expresses sine of angles as function of area:

$$
\sin \alpha=2 \frac{\text { Area }}{b c}, \quad \sin \beta=2 \frac{\text { Area }}{a c}, \quad \sin \gamma=2 \frac{\text { Area }}{a b}
$$

Problems involving height/distance: terminology

Angle of elevation: you look up at something

Angle of depression: you look down at something

Example

From a plane flying horizontally over a straight road, you see two road signs under an angle of 45° and 60°, respectively. The two road signs are 1 km apart. Find the height at which the plane is flying.

Problems for you to try (solution next lecture)

- You see a town on a hillside at an angle of elevation of 30°. You walk 80 meters (horizontally, along the ground) and see the town at an angle of elevation of 60°. Find the height of the town above ground level.
- A man lies on the ground and observes that a temple and a flagpole on that temple subtend equal angles at his eyes. If the height of the temple is 10 m and that of the flagpole is 20 m , find the subtended angles and the distance between the temple and the man.
- You are standing on the fortress walls, overlooking an approaching zombie army. You observe a zombie under an angle of depression of 45° and shoot an arrow. One second later, you shoot another arrow at the same zombie under an angle of depression of 60°. How soon will the zombie reach the base of the wall?

