Coordinate Geometry

Introduction to Engineering Mathematics

Prof. Joris Vankerschaver

Contents

(1) Coordinate geometry
(2) Locus of points
(3) Equations of circles
(4) Equations of lines
(5) Exercise

What is coordinate geometry?

Studying geometry through coordinate calculations.

Example: distance between two points

Distance between P and Q :
$d(P, Q)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Example: midpoint between two points

Coordinates of midpoint between P and Q :

$$
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) .
$$

Locus of points

"Locus" $=$ Set of points satisfying some condition.

- Circle: All points at given distance from a fixed center.
- Ellipse: All points for which the sum of distances to two fixed points (focal points) is constant
- Parabola: All points that are at equal distance from a fixed point and a given line (directrix)

Example

Find the locus of points for which the distance to the x-axis is equal to the distance to the point $(0,1)$.

Circles

Locus of points $P(x, y)$ at distance R from center $C(h, k)$.
We have $d(P, C)=R$ so that

$$
\sqrt{(x-h)^{2}+(y-k)^{2}}=R
$$

and by squaring

$$
(x-h)^{2}+(y-k)^{2}=R^{2}
$$

Example

Find the equation of the circle that has the points $(1,1)$ and $(7,9)$ as end points of a diameter.

Example

Find the center and radius of the circle given by
$x^{2}+y^{2}-6 x+2 y+8=0$.

Lines

Line not parallel to the y-axis:

$$
y=m x+q
$$

with

- m : the slope
- q : the intercept

Lines

Line parallel to the y-axis:

$$
x=a
$$

with

- a : where the line intersects the x-axis

Finding the slope of a line

Take

- $\Delta x=x_{2}-x_{1}$
- $\Delta y=y_{2}-y_{1}$

Then

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

" Δx steps to the right, Δy steps up/down."

Example

Find the equation for the line through $(1,5)$ and $(2,7)$.

Properties

Equation for the line through $\left(x_{0}, y_{0}\right)$ with slope m :

$$
y-y_{0}=m\left(x-x_{0}\right)
$$

Equation for the line through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$:

$$
y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right) .
$$

Parallel/perpendicular lines

Two lines are ...

- parallel if their slopes are the same: $m_{1}=m_{2}$
- perpendicular if their slopes satisfy: $m_{1} m_{2}=-1$

In general, the angle θ between two lines is determined by

$$
\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|
$$

Example

Given two lines $L_{1}: x+2 y-3=0$ and $L_{2}: k x+y-5=0$, for which value of k are L_{1} and $L_{2} \ldots$
(1) Parallel?
(2) Perpendicular?
(3) At an angle of 45° ?

Distance of a point to a line

Distance between point $P\left(x_{0}, y_{0}\right)$ and line $L: a x+b y+c=0$:

$$
D=\frac{\left|a x_{0}+b y_{0}+c\right|}{\sqrt{a^{2}+b^{2}}} .
$$

Different representations of lines

(1) Slope/intercept:

- $y=m x+q$ (not parallel to y-axis)
- $x=a$ (parallel)
(2) Linear representation: $a x+b y+c=0$
(3) Polar representation:
- For line through the origin: $\tan \theta=m$
- For line not through the origin:

$$
r=\frac{q}{\sin \theta-m \cos \theta}
$$

Exercise

Find the equation of the common tangent line between two touching circles given by

$$
\begin{aligned}
& C_{1}: x^{2}+y^{2}-6 x-12 y+37=0 \\
& C_{2}: x^{2}+y^{2}-6 y+7=0
\end{aligned}
$$

A MATH NOTICE A

THE COORDINATE PLANE WILL BE CLOSED THURSDAY BETWEEN ($1.5,1$) AND (2,1.5) TO REPAIR A HOLE.

IF YOUR GRAPH USES THIS AREA, PLEASE POSTPONE DRAWING UNTIL FRIDAY OR TRANSFORMIT TO DIFFERENT COORDINATES.

Source: xkcd 2735

