Limits and Continuity (2/2)
 Introduction to Engineering Mathematics

Prof. Joris Vankerschaver

Contents

(1) Infinite limits
(2) Vertical and horizontal asymptotes
(3) Limit laws
(4) Continuity

Infinite limits

We say that $f(x)$ has an infinite limit for $x \rightarrow a$ if the values of $f(x)$ become arbitrarily large when $x \rightarrow a$.

We note

$$
\lim _{x \rightarrow a} f(x)=\infty \quad \text { or } \quad \lim _{x \rightarrow a} f(x)=-\infty
$$

depending on the sign of $f(x)$ near $x=a$.
Examples:

- $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$
- $\lim _{x \rightarrow 0+} \ln x$

Vertical asymptotes

The line $x=a$ is a vertical asymptote of $f(x)$ if at least one of the following is true:

$$
\lim _{x \rightarrow a+} f(x)= \pm \infty \quad \text { or } \quad \lim _{x \rightarrow a-} f(x)= \pm \infty
$$

Example: find the vertical asymptotes of

- $y=\ln x$
- $y=\tan x$

Example

Find all vertical asymptotes of the function

$$
f(x)=\frac{|x-1|}{x^{2}-3 x+2}
$$

Hint: Look for zeros of the denominator that are not zeros of the numerator.

Limits at infinity (intuition)

What happens to $f(x)$ when x becomes very large (positive/negative)?

Examples:

- $\lim _{x \rightarrow \pm \infty} \frac{x^{2}-1}{x_{x \rightarrow+\infty}^{2}+1}$

Limits at infinity (definition)

We write:

$$
\lim _{x \rightarrow+\infty} f(x)=L
$$

$$
\lim _{x \rightarrow-\infty} f(x)=M
$$

We mean:

- $f(x)$ is defined on an interval $(a,+\infty)$
- $f(x)$ gets as close as we want to L by taking x large enough.
- $f(x)$ is defined on an interval $(-\infty, b)$
- $f(x)$ gets as close as we want to M by taking x large enough (in the negative direction).

Horizontal asymptotes

The line $y=L$ is a horizontal asymptote of $f(x)$ if at least one of the following is true:

$$
\lim _{x \rightarrow+\infty} f(x)=L \quad \text { or } \lim _{x \rightarrow-\infty} f(x)=L
$$

Examples: Find the horizontal asymptotes of

- $y=\frac{x^{2}-1}{x^{2}+1}$
- $y=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$

Limit laws

(1) $\lim _{x \rightarrow \infty} x=\infty$
(2) $\lim _{x \rightarrow \infty} c=c$ (for c a constant)
(3) $\lim _{x \rightarrow \infty}(f(x)+g(x))=\lim _{x \rightarrow \infty} f(x)+\lim _{x \rightarrow \infty} g(x)$
(4) $\lim _{x \rightarrow \infty}(c f(x))=c \lim _{x \rightarrow \infty} f(x)$
(5) $\lim _{x \rightarrow \infty}(f(x) g(x))=\lim _{x \rightarrow \infty} f(x) \lim _{x \rightarrow \infty} g(x)$
(6) $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow \infty} f(x)}{\lim _{x \rightarrow \infty} g(x)}$, if the denominator is not zero

Limit laws (continued)

(7) $\lim _{x \rightarrow \infty} f(x)^{m / n}=\left(\lim _{x \rightarrow \infty} f(x)\right)^{m / n}=L^{m / n}$, if

- $L \geq 0$ for n even
- $L \neq 0$ for m negative

8 If $f(x) \leq g(x)$, then $\lim _{x \rightarrow \infty} f(x) \leq \lim _{x \rightarrow \infty} g(x)$
(9) $\lim _{x \rightarrow \infty} 1 / x^{n}=0$, if $n>0$
(10) $\lim _{x \rightarrow \infty} g(f(x))=\lim _{y \rightarrow c} g(y)$, where $c=\lim _{x \rightarrow \infty} f(x)$, if

- c is constant (not equal to $\pm \infty$)
- f is continuous (see later)

Examples

$$
\lim _{x \rightarrow+\infty} \frac{2 x^{5}+1}{x^{5}+x^{3}+1}
$$

Examples

$$
\lim _{x \rightarrow-\infty} \frac{x^{7}}{\sqrt{x^{14}+1}}
$$

Examples

$\lim _{x \rightarrow+\infty}\left(\sqrt{x^{2}+1}-x\right)$

Examples

$\lim e^{1 / x}$
$x \rightarrow 0-$

Examples

$\lim \sin x$
$x \rightarrow+\infty$

Examples

$$
\lim _{x \rightarrow \pi / 2-} e^{\tan x}
$$

Infinite limits at infinity

Examples:

Summary of limit techniques

(1) Try "just substituting" $\pm \infty$
(2) Use common manipulations:

- Simplify
- Highest powers
- Conjugate
- ...

Special cases (to memorize):

$$
\lim _{h \rightarrow 0} \frac{\sin h}{h}=1 \quad \text { and } \quad \lim _{h \rightarrow 0} \frac{\cos h-1}{h}=0 .
$$

Continuity

- Intuitively, continuity = "no jumps"
- Mathematically, $f(x)$ is continuous at an interior point $x=a$ of its domain if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Example: $f(x)=\frac{x^{2}-x-3}{x-2}$ is not continuous at $x=2$.

Examples

Define $f(x)=\frac{x^{2}-x-2}{x-2}$ when $x \neq 2$ and $f(x)=1$ otherwise (i.e. $f(2)=1$). Is $f(x)$ continuous at $x=2$?

Left/right continuity

$$
\text { At } x=a, f(x) \text { is } \ldots
$$

- Right continuous if $\lim _{x \rightarrow a+} f(x)=f(a)$
- Left continuous if $\lim _{x \rightarrow a-} f(x)=f(a)$.

Example: the Heaviside function is defined by $H(x)=0$ when $x<0$ and $H(x)=1$ when $x \geq 0$. Is $H(x)$ right or left continuous at $x=0$?

Continuity on an interval

The function $f(x)$ is continuous on an interval $[a, b]$ if ...

- $f(x)$ is continuous at every $x \in(a, b)$
- $f(x)$ is right-continuous in a
- $f(x)$ is left-continuous in b.

Example: Show that $f(x)=1-\sqrt{1-x^{2}}$ is continuous on $[-1,1]$.

Making new continuous functions out of old ones

If $f(x), g(x)$ are continuous at $x=a$, and c is a constant, then the following are also continuous at $x=a$:

- $f+g$
- $f-g$
- $c f$
- $f g$
- f / g (if $g(a) \neq 0)$

Which functions are continuous?

Continuous on their domain:

- Polynomials
- Rational functions
- Trigonometric functions + inverse trigonometric functions
- Square roots, nth roots
- log, exp

In particular:

- Polynomials are continuous for all $x \in \mathbb{R}$
- Rational functions $P(x) / Q(x)$ are continuous for all x so that $Q(x) \neq 0$.

Composition of functions

If $f(x)$ is continuous and $\lim _{x \rightarrow a} g(x)=b$, then

$$
\lim _{x \rightarrow a} f(g(x))=f(b)=f\left(\lim _{x \rightarrow b} g(x)\right)
$$

Example: $\lim _{x \rightarrow 2} \sin \left(\frac{2-x}{4-x^{2}} \pi\right)$

Corollary

If g is continuous at $x=a$ and f is continuous at $y=g(a)$, then $f \circ g$ is continuous at $x=a$.

Examples: Where are the following functions continuous?

- $h(x)=\sin x^{2}$
- $h(x)=\ln (1+\cos x)$

