Derivatives (1/2)
 Introduction to Engineering Mathematics

Prof. Joris Vankerschaver

Contents

- Motivation: tangent lines
- Definition of the derivative
- Relation with continuity
- Derivatives of
- Polynomials
- Exponential/logarithmic function
- Trigonometric functions
- Sum/product rule
- Chain rule

Motivation: tangent lines

In the previous class, we managed to compute the slope of the tangent line to the parabola $y=x^{2}$ by computing the limit

$$
m=\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2
$$

How would we do this for an arbitrary curve $y=f(x)$?

Derivative of a function

We define the derivative of $f(x)$ at $x=a$ (" f prime") as

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \quad \text { (if the limit exists). }
$$

If we put $h=x-a$, we can rewrite this as

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

This is sometimes easier to compute.
If $f^{\prime}(a)$ exists, we say that $f(x)$ is differentiable at $x=a$.

Examples

Compute the derivative of $f(x)=3 x^{2}+7 x-5$ at $x=1$.

Examples

Compute the derivative of $f(x)=|x|$ at $x=a$.

The derivative as a function

By letting a vary in $f^{\prime}(a)$, we obtain a function given by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \text { (if the limit exists). }
$$

There are many notations for the derivative function: for $y=f(x)$,

$$
f^{\prime}(x)=y^{\prime}=\frac{d f}{d x}=\frac{d y}{d x}=\frac{d}{d x} f(x)
$$

all mean the same thing.

Example

Show that $\frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}}$.

Properties of differentiable functions

We say that $y=f(x)$ is differentiable on an interval $[a, b]$ if

- $f^{\prime}(x)$ exists for each $x \in(a, b)$
- At $x=a$, the right derivative exists:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0+} \frac{f(a+h)-f(a)}{h}
$$

- At $x=b$, the left derivative exists:

$$
f^{\prime}(b)=\lim _{h \rightarrow 0-} \frac{f(b+h)-f(b)}{h}
$$

Link between differentiability and continuity

- If $f(x)$ is differentiable at $x=a$, then $f(x)$ is also continuous at $x=a$.
- The converse is not necessarily true!

Example: Show that $y=|x|$ is differentiable for all $x \neq 0$.

Higher-order derivatives

Now that we can take the derivative of a function, we can take the derivative of the derivative, and so on...

Notation	Name
$f^{\prime}(x)$	1st-order derivative
$f^{\prime \prime}(x)=\frac{d}{d x} f^{\prime}(x)$	2nd-order derivative
\cdots	\ldots
$f^{(n)}(x)=\frac{d}{d x} f^{(n-1)}(x)$	n th-order derivative

Derivative of a polynomial: basic rules

(1)

$$
\frac{d}{d x} c=0
$$

(2)

$$
\frac{d x^{n}}{d x}=n x^{n-1} \quad \text { for } n \neq 0
$$

Derivative of a polynomial: basic rules
(3)

$$
\frac{d}{d x}(c f(x))=c \frac{d f}{d x}
$$

(4)

$$
\frac{d}{d x}(f(x)+g(x))=\frac{d f}{d x}+\frac{d g}{d x}
$$

Examples

Compute the derivative of $f(x)=3 x^{2}+7 x-5$.

Derivative of the exponential/logarithm

$$
\begin{aligned}
\frac{d}{d x} e^{x} & =e^{x} \\
\frac{d}{d x} \ln x & =\frac{1}{x}
\end{aligned}
$$

For a different base:

$$
\begin{aligned}
\frac{d}{d x} a^{x} & =a^{x} \ln a \\
\frac{d}{d x} \log _{a} x & =\frac{1}{x \ln a}
\end{aligned}
$$

- The last two rules will follow from the chain rule
- Do not confuse the rules for a^{x} and x^{n} !

Product and quotient rules

$$
\begin{aligned}
\frac{d}{d x}(f(x) g(x)) & =f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
\frac{d}{d x} \frac{f(x)}{g(x)} & =\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
\end{aligned}
$$

Examples: Compute

- $\frac{d}{d x}\left(x^{2} e^{x}\right)$
- $\frac{d}{d x} \frac{x+1}{x+3}$

Derivatives of trigonometric functions

$$
\begin{aligned}
\frac{d}{d x} \sin x & =\cos x \\
\frac{d}{d x} \cos x & =-\sin x \\
\frac{d}{d x} \tan x & =\frac{1}{\cos ^{2} x}
\end{aligned}
$$

Examples

Using the rules from the previous slide, show that

$$
\begin{aligned}
\frac{d}{d x} \csc x & =-\cot x \csc x \\
\frac{d}{d x} \sec x & =\tan x \sec x \\
\frac{d}{d x} \cot x & =-\csc ^{2} x
\end{aligned}
$$

Example solution:

$$
\frac{d}{d x} \csc x=\frac{d}{d x} \frac{1}{\sin x}=\frac{1^{\prime} \cdot \sin x-\sin ^{\prime}(x) \cdot 1}{\sin ^{2} x}=-\frac{\cos x}{\sin ^{2} x} .
$$

(This will be easier once we cover the chain rule)

Derivatives of inverse trigonometric functions

$$
\begin{aligned}
\frac{d}{d x} \arcsin x & =\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x} \arccos x & =\frac{-1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x} \arctan x & =\frac{1}{1+x^{2}}
\end{aligned}
$$

These rules can be derived by means of implicit differentation, which we will cover later.

The chain rule

- Useful for composite functions $F=f \circ g$ (" f after g ")
- If $f(x)$ and $g(x)$ are differentiable, then the composite function $F(x)$ is also differentiable and

$$
F^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Example

Compute $\frac{d}{d x} e^{\sqrt{\cos x}}$.

Example

Compute $\frac{d}{d x} x^{\sin (x)}$.

