Theory of equations (2/2): Polynomial equations Introduction to Engineering Mathematics

Prof. Joris Vankerschaver

Contents

- Remainder theorems
- Restrictions on the number of roots
- Fundamental theorem of algebra
- Complete factorization theorem
- Conjugate zeros theorem

Overview

- Every polynomial of degree N has N roots
 - Some of these roots may be *complex* (e.g. $x^2 + 1$)
 - Some of these roots may be the same (e.g. $x^2 + 2x + 1$)
- Roots correspond to factors of the polynomial
- There is no algorithm for finding all roots of a polynomial
- If a real polynomial has a complex root z, then the complex conjugate \bar{z} is also a root (e.g. $x^3-x^2+x-1)$

Recall

Polynomial of degree n:

$$P(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$$

- The number n is called the **degree** of P(x).
- A root or zero is a number α such that $P(\alpha) = 0$.
- Roots can be real $(\alpha \in \mathbb{R})$ or complex $(\alpha \in \mathbb{C})$.
- A factor is a polynomial F(x) such that P(x) = F(x)Q(x) for some other polynomial Q(x).
 - Linear factor: $F(x) = x \alpha$
 - Quadratic factor: $F(x) = Ax^2 + Bx + C$

Remainder theorem (special case)

If $P(\boldsymbol{x})$ is a polynomial, then P(h) is the remainder of $P(\boldsymbol{x})$ divided by $\boldsymbol{x}-h.$

Corollary

Note: "Corollary" means "consequence".

If P(x) is a polynomial with zero $\alpha \in \mathbb{C}$ (in other words, $P(\alpha) = 0$), then $x - \alpha$ is a factor of P(x):

$$P(x) = (x - \alpha)Q(x).$$

Example

Find all the factors of $P(\boldsymbol{x})=2\boldsymbol{x}^3+3\boldsymbol{x}^2-1.$

Remainder theorem (general version)

If
$$P(x)$$
 is a polynomial with $distinct \ {\rm zeros} \ \alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{C}$, then $(x-\alpha_1)(x-\alpha_2)\cdots(x-\alpha_k)$ is a factor of $P(x)$:

$$P(x)=(x-\alpha_1)(x-\alpha_2)\cdots(x-\alpha_k)Q(x).$$

Notes:

• There are at most n distinct zeros, where n is the degree of P(x) (see later).

Examples

Find a polynomial of degree 4 with roots $\pm i,$ $\pm 2,$ and such that P(3)=25.

Examples

Find a polynomial of degree 4 with roots 0 and -2, and where the root -2 has multiplicity 3.

How many roots can a polynomial have?

Theorem: A polynomial $P(x) \neq 0$ cannot have more than n distinct roots, where $n = \deg P(x)$.

Proof: Assume that there are m distinct roots α_1,\ldots,α_m , with $m>\deg P(x).$ Then by the remainder theorem,

$$P(x)=(x-\alpha_1)\cdots(x-\alpha_m)Q(x).$$

The left-hand side has degree n, whereas the right-hand side has degree at least m > n. This is a contradiction.

Relation between roots and coefficients

Define the symmetric polynomials:

$$\begin{array}{l} \bullet \ S_1 = a_1 + \dots + a_n \\ \bullet \ S_2 = a_1 a_2 + a_1 a_3 + \dots + a_1 a_n + a_2 a_3 + \dots + a_{n-1} a_n \\ \bullet \ S_3 = a_1 a_2 a_3 + \dots + a_{n-2} a_{n-1} a_n \\ \bullet \ \dots \\ \bullet \ S_n = a_1 a_2 \dots a_n \end{array}$$

Then:

$$\begin{array}{l} (x-a_1)(x-a_2)\cdots(x-a_n)=\\ x^n-S_1x^{n-1}+S_2x^{n-2}-S_3x^{n-3}+\cdots+(-1)^nS_n. \ \ (1) \end{array}$$

Example

Given $P(x) = x^3 + 2x^2 - 3x - 1$ with roots α , β , and γ , find the value of $\alpha^2 + \beta^2 + \gamma^2$.

The fundamental theorem of algebra

Theorem: Each polynomial has *at least one* root (which may be complex).

Proof: Difficult.

Consequence: Each polynomial of degree n has exactly n roots (which may be same).

How to find roots?

- Degree 2: formula for quadratic equation
- Degree 3, 4: formulas exist, but they are very complicated
- Degree 5 and up: no general formula exists

In general, proceed via trial and error, or numerically.

Example

Factorize
$$P(x) = x^4 + 2x^3 + 2x^2 + 2x + 1$$
.

Complex conjugates theorem

Theorem: If P(x) is a polynomial with real coefficients, then complex roots appear in *conjugates*.

In other words, if $z = \alpha + i\beta$ is a root with multiplicity p, then $\bar{z} = \alpha - i\beta$ is also a root with multiplicity p.