Theory of equations (2/2): Polynomial equations

 Introduction to Engineering MathematicsProf. Joris Vankerschaver

Contents

- Remainder theorems
- Restrictions on the number of roots
- Fundamental theorem of algebra
- Complete factorization theorem
- Conjugate zeros theorem

Overview

- Every polynomial of degree N has N roots
- Some of these roots may be complex (e.g. $x^{2}+1$)
- Some of these roots may be the same (e.g. $x^{2}+2 x+1$)
- Roots correspond to factors of the polynomial
- There is no algorithm for finding all roots of a polynomial
- If a real polynomial has a complex root z, then the complex conjugate \bar{z} is also a root (e.g. $x^{3}-x^{2}+x-1$)

Recall

Polynomial of degree n :

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

- The number n is called the degree of $P(x)$.
- A root or zero is a number α such that $P(\alpha)=0$.
- Roots can be real $(\alpha \in \mathbb{R})$ or complex $(\alpha \in \mathbb{C})$.
- A factor is a polynomial $F(x)$ such that $P(x)=F(x) Q(x)$ for some other polynomial $Q(x)$.
- Linear factor: $F(x)=x-\alpha$
- Quadratic factor: $F(x)=A x^{2}+B x+C$

Remainder theorem (special case)

If $P(x)$ is a polynomial, then $P(h)$ is the remainder of $P(x)$ divided by $x-h$.

Corollary

Note: "Corollary" means "consequence".
If $P(x)$ is a polynomial with zero $\alpha \in \mathbb{C}$ (in other words,
$P(\alpha)=0)$, then $x-\alpha$ is a factor of $P(x)$:

$$
P(x)=(x-\alpha) Q(x)
$$

Example

Find all the factors of $P(x)=2 x^{3}+3 x^{2}-1$.

Remainder theorem (general version)

If $P(x)$ is a polynomial with distinct zeros $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{C}$, then $\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{k}\right)$ is a factor of $P(x)$:

$$
P(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{k}\right) Q(x) .
$$

Notes:

- There are at most n distinct zeros, where n is the degree of $P(x)$ (see later).

Examples

Find a polynomial of degree 4 with roots $\pm i, \pm 2$, and such that $P(3)=25$.

Examples

Find a polynomial of degree 4 with roots 0 and -2 , and where the root -2 has multiplicity 3 .

How many roots can a polynomial have?

Theorem: A polynomial $P(x) \neq 0$ cannot have more than n distinct roots, where $n=\operatorname{deg} P(x)$.

Proof: Assume that there are m distinct roots $\alpha_{1}, \ldots, \alpha_{m}$, with $m>\operatorname{deg} P(x)$. Then by the remainder theorem,

$$
P(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{m}\right) Q(x) .
$$

The left-hand side has degree n, whereas the right-hand side has degree at least $m>n$. This is a contradiction.

Relation between roots and coefficients

Define the symmetric polynomials:

- $S_{1}=a_{1}+\cdots+a_{n}$
- $S_{2}=a_{1} a_{2}+a_{1} a_{3}+\cdots+a_{1} a_{n}+a_{2} a_{3}+\cdots+a_{n-1} a_{n}$
- $S_{3}=a_{1} a_{2} a_{3}+\cdots+a_{n-2} a_{n-1} a_{n}$
- ...
- $S_{n}=a_{1} a_{2} \cdots a_{n}$

Then:

$$
\begin{align*}
& \left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)= \\
& \quad x^{n}-S_{1} x^{n-1}+S_{2} x^{n-2}-S_{3} x^{n-3}+\cdots+(-1)^{n} S_{n} . \tag{1}
\end{align*}
$$

Example

Given $P(x)=x^{3}+2 x^{2}-3 x-1$ with roots α, β, and γ, find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$.

The fundamental theorem of algebra

Theorem: Each polynomial has at least one root (which may be complex).

Proof: Difficult.
Consequence: Each polynomial of degree n has exactly n roots (which may be same).

How to find roots?

- Degree 2: formula for quadratic equation
- Degree 3, 4: formulas exist, but they are very complicated
- Degree 5 and up: no general formula exists

In general, proceed via trial and error, or numerically.

Example

Factorize $P(x)=x^{4}+2 x^{3}+2 x^{2}+2 x+1$.

Complex conjugates theorem

Theorem: If $P(x)$ is a polynomial with real coefficients, then complex roots appear in conjugates.

In other words, if $z=\alpha+i \beta$ is a root with multiplicity p, then $\bar{z}=\alpha-i \beta$ is also a root with multiplicity p.

