The binomial theorem Introduction to Engineering Mathematics

Prof. Joris Vankerschaver

Overview

- Pascal's triangle
- Binomial coefficients
- Binomial theorem

Pascal's triangle

Expand the following expressions and look at the coefficients.

•
$$(a+b)^0 = 1$$

• $(a+b)^1 = a+b$
• $(a+b)^2 = a^2 + 2ab + b^2$
• $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$
• $(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$
• $(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$

What do you notice?

Based on this pattern, what is $(a+b)^7$?

Would you be able to write down $(a + b)^{27}$?

Blaise Pascal, 1665 CE

Jian Xian (), 11th century CE

Example

Use Pascal's triangle to expand
$$\left(2x+rac{1}{x}
ight)^5.$$

Binomial coefficients

- Factorial: $n! = n(n-1)(n-2) \cdots 2 \cdot 1$.
- Binomial coefficient (also called "n-choose-k"):

$${n \choose k} = C_n^k = \frac{n!}{k!(n-k)!}$$

• Measures the number of ways of choosing k objects from among n choices.

Properties

For all n and $k \leq n$:

$$\binom{n}{0} = \binom{n}{n} = 1$$
$$\binom{n}{1} = \binom{n}{n-1} = n$$
$$\binom{n}{k} = \binom{n}{n-k}$$

Rewriting Pascal's triangle using binomial coefficients

The binomial expansion

Putting everything we've learned together, we get

$$(a+b)^n = \binom{n}{0}a^nb^0 + \binom{n}{1}a^{n-1}b^1 + \dots + \binom{n}{n-1}a^1b^{n-1} + \binom{n}{n}a^0b^n.$$

This can be written more compactly as

$$(a+b)^n = \sum_{k=0}^n {n \choose k} a^{n-k} b^k.$$

Example

Use the binomial expansion to expand $(\sqrt{x}-1)^7$.

Visual proof of the binomial expansion (optional)

