The binomial theorem
 Introduction to Engineering Mathematics

Prof. Joris Vankerschaver

Overview

- Pascal's triangle
- Binomial coefficients
- Binomial theorem

Pascal's triangle

Expand the following expressions and look at the coefficients.

- $(a+b)^{0}=1$
- $(a+b)^{1}=a+b$
- $(a+b)^{2}=a^{2}+2 a b+b^{2}$
- $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
- $(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$
- $(a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}$

What do you notice?
Based on this pattern, what is $(a+b)^{7}$?
Would you be able to write down $(a+b)^{27}$?

图方森七法古

Blaise Pascal， 1665 CE

Jian Xian（ ），11th century CE

Example

Use Pascal's triangle to expand $\left(2 x+\frac{1}{x}\right)^{5}$.

Binomial coefficients

- Factorial: $n!=n(n-1)(n-2) \cdots 2 \cdot 1$.
- Binomial coefficient (also called "n-choose-k"):

$$
\binom{n}{k}=C_{n}^{k}=\frac{n!}{k!(n-k)!} .
$$

- Measures the number of ways of choosing k objects from among n choices.

Properties

For all n and $k \leq n$:

$$
\begin{aligned}
& \binom{n}{0}=\binom{n}{n}=1 \\
& \binom{n}{1}=\binom{n}{n-1}=n \\
& \binom{n}{k}=\binom{n}{n-k}
\end{aligned}
$$

Rewriting Pascal's triangle using binomial coefficients

The binomial expansion

Putting everything we've learned together, we get

$$
(a+b)^{n}=\binom{n}{0} a^{n} b^{0}+\binom{n}{1} a^{n-1} b^{1}+\cdots+\binom{n}{n-1} a^{1} b^{n-1}+\binom{n}{n} a^{0} b^{n} .
$$

This can be written more compactly as

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

Example

Use the binomial expansion to expand $(\sqrt{x}-1)^{7}$.

Visual proof of the binomial expansion (optional)

