Integration: Partial Fractions
 Introduction to Engineering Mathematics

Prof. Joris Vankerschaver

What are partial fractions?

Every rational function can be written as a sum of "simple" partial fractions. For example

$$
\frac{x+2}{x^{3}-x}=\frac{-2}{x}+\frac{3}{2(x-1)}+\frac{1}{2(x+1)}
$$

In this lecture, we will find a recipe for the coefficients and terms in the partial fraction expansion.

Why are partial fractions useful?

The advantage is that the partial fractions are much easier to integrate:

$$
\begin{aligned}
\int \frac{x+2}{x^{3}-x} d x & =-2 \int \frac{d x}{x}+\frac{3}{2} \int \frac{d x}{x-1}+\frac{1}{2} \int \frac{d x}{x+1} \\
& =-2 \ln |x|+\frac{3}{2} \ln |x-1|+\frac{1}{2} \ln |x+1|+C .
\end{aligned}
$$

How to find the partial fraction expansion

Goal

To integrate any rational function: determine

$$
\int \frac{P(x)}{Q(x)} d x=? ? ?
$$

where $P(x)$ and $Q(x)$ are polynomials.

Step 1: Divide if necessary

If the degree of $P(x)$ is greater than or equal to the degree of $Q(x)$, do a polynomial division:

$$
\int \frac{P(x)}{Q(x)} d x=\int S(x) d x+\int \frac{R(x)}{Q(x)} d x
$$

with $S(x)$ the quotient and $R(x)$ the remainder.

- Recall: $\operatorname{deg} R(x)<\operatorname{deg} Q(x)$.
- From now on, we will suppose that this division has already been done, so that $\operatorname{deg} P(x)<\operatorname{deg} Q(x)$.

Special case 1: Linear denominator

If $Q(x)$ is a linear polynomial, i.e. $Q(x)=A x+B$, then our integral takes the form

$$
\begin{aligned}
\int \frac{P(x)}{Q(x)} d x & =\int \frac{K}{A x+B} d x \\
& =\cdots
\end{aligned}
$$

Special case 2: Quadratic denominator

If $Q(x)$ is a quadratic polynomial, then several cases are possible. After completing the square, we can have one of the following forms:

If $\operatorname{deg} P(x)=0$:

- $\int \frac{d x}{x^{2}-a^{2}}$
- $\int \frac{d x}{x^{2}+a^{2}}$

If $\operatorname{deg} P(x)=1$:

$$
\begin{aligned}
& \text { - } \int \frac{x d x}{x^{2}-a^{2}} \\
& \text { - } \int \frac{x d x}{x^{2}+a^{2}}
\end{aligned}
$$

Step 2: Find the roots of the denominator

Do a factorization of the denominator $Q(x)$ into factors with real coefficients.

You will find:

- Some linear factors $(x-\alpha)$, with α roots of $Q(x)$
- Some quadratic factors $\left(A x^{2}+B x+C\right)$ that cannot be further reduced.

Step 2: Find the roots of the denominator

Do a factorization of the denominator $Q(x)$ into factors with real coefficients.

You will find:

- Some linear factors $(x-\alpha)$, with α roots of $Q(x)$
- Some quadratic factors $\left(A x^{2}+B x+C\right)$ that cannot be further reduced.

Important: Do not split into complex factors. For example:

$$
x^{3}+x=x\left(x^{2}+1\right)
$$

Stop here, don't factor into $x(x+i)(x-i)$.

Case 2.1: Distinct roots

Assume that $Q(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{k}\right)$, with all α_{i} distinct and real.

Then the partial fraction expansion becomes

$$
\frac{P(x)}{Q(x)}=\frac{A_{1}}{x-\alpha_{1}}+\frac{A_{2}}{x-\alpha_{2}}+\cdots+\frac{A_{k}}{x-\alpha_{k}}
$$

where the coefficients A_{1}, \ldots, A_{k} can be determined by adding the terms together and comparing with the left-hand side.

Example

Find $\int \frac{x+2}{x^{3}-x} d x$

Case 2.2: Irreducible quadratic factors

- For each quadratic factor, put a linear term in the numerator of the partial fraction.
- Deal with the linear factors as before.

Example

$$
\begin{aligned}
\frac{x+2}{x^{3}+x} & =\frac{x+2}{x\left(x^{2}+1\right)} \\
& =\frac{A}{x}+\frac{B x+C}{x^{2}+1} \\
& =\cdots
\end{aligned}
$$

Therefore $\int \frac{x+2}{x^{3}+x} d x=\cdots$

Case 2.3: Repeated linear factors

- If $Q(x)$ has a repeated factor $(x-\alpha)^{p}$, then add p terms to the partial fraction expansion:

$$
\frac{P(x)}{Q(x)}=\frac{A_{1}}{x-\alpha}+\frac{A_{2}}{(x-\alpha)^{2}}+\cdots+\frac{A_{p}}{(x-\alpha)^{p}}+[\text { other PFE }]
$$

- Deal with other linear and quadratic factors as before.

Example

Determine the partial fraction expansion of $\frac{1}{x^{2}(x-1)^{3}}$.

Example

Find $\int \frac{d x}{x^{3}-5 x^{2}+8 x-4}$.

Summary

(1) If $\operatorname{deg} P(x) \geq \operatorname{deg} Q(x)$, do polynomial division.
(2) Factor the denominator $Q(x)$ and write partial fractions for each root:

- Distinct roots (roots with multiplicity 1):

$$
\mathrm{PF}=\frac{A}{x-\alpha}
$$

- Irreducible quadratic factors:

$$
\mathrm{PF}=\frac{A x+B}{x^{2}+\cdots}
$$

- Root with multiplicity p :

$$
\frac{A_{1}}{x-\alpha}+\cdots+\frac{A_{p}}{(x-\alpha)^{p}} .
$$

(3) Find the coefficients in the partial fraction expansion by solving a system of equations.
(4) Integrate the partial fraction expansion.

