Proof Techniques
 Introduction to Engineering Mathematics

Prof. Joris Vankerschaver

Overview

- Logical statements
- Implication
- Equivalence
- Single statement
- Proof techniques
(1) Direct proof
(2) Proof by contraposition
(3) Proof by contradiction
(4) Case enumeration

5 Induction

Proving an implication

- "If p is true, then q is also true."
- Notation: $p \Rightarrow q$

For example:

- If n is an odd number, then $2 n$ is an even number.
- If it rains, then the ground gets wet.

Caveat

$$
p \Rightarrow q \text { does not mean that } q \Rightarrow p!
$$

For example:

- If the ground is wet, it doesn't necessarily mean that it's raining.
- For $n=10,2 n=20$ is even, but 10 is not odd.

Technique 1: direct proof

- Start from p, then work your way to q.
- This is how we've constructed most proofs so far.

Example:

- In words: For each positive real number x, there exists a real number y such that $y(y+1)=x$.
- Mathematically: $\forall x>0 \in \mathbb{R} \Rightarrow \exists y \in \mathbb{R}: y(y+1)=x$.

Technique 2: Proof by contraposition

- "If p then q " is logically equivalent to "if not q then not p ".
- Start from "not q ", work towards "not p ".
- Mind the direction of the implication!

Example: Show that if n^{2} is even (for n a natural number), then n is also even.

Caveat: negating a logical statement

De Morgan's laws:

- not $(p$ and $q)=(\operatorname{not} p)$ or $(\operatorname{not} q)$
- not $(p$ or $q)=(\operatorname{not} p)$ and $(\operatorname{not} q)$

Example: Show that if $x^{2} \neq 1$, then $x \neq \pm 1$.

Technique 3: Proof by contradiction

- Assume that q is not true, start from p, and work towards a contradiction.
- If a contradiction is found, our starting assumption must have been false, and therefore q is true.

Example: Prove that if $x^{2}=2 x$ and $x \neq 0$, then $x=2$.

Proving an equivalence

- " p holds if and only if (iff) q holds."
- Notation: $p \Leftrightarrow q$

Proving an equivalence means proving two implications: $p \Rightarrow q$ and $q \Rightarrow p$.

Example: Prove that n^{2} is even if and only if n is even.

Proving a single statement

Example: Prove that $\sqrt{2}$ is irrational.

Technique 4: Proof by case enumeration

- Split statement into subcases, prove each case separately.
- Don't forget any subcases!

Example: Show that for all $x, y \in \mathbb{R},|x y|=|x||y|$.

Technique 5: Proof by induction

- Prove that a statement $P(n)$ holds for every natural number n.
- Proceeds in two steps:
- Prove a base case, usually $P(1)$.
- Prove the induction step: if $P(k)$ holds, then $P(k+1)$ holds too.

Example: Show that the sum of the first n numbers is equal to $\frac{n(n+1)}{2}$:

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

Example

Show that the sum of the first n odd numbers is equal to n^{2} :

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

Exam problem

10. For a homework assignment, a student has to come up with a proof by contraposition for the following theorem: For all integers n, if n^{2} is even, then n is also even. As she is running out of time, she asks ChatGPT, an advanced AI model, to come up with a proof for her. Unfortunately, the proof provided by ChatGPT contains a number of errors.
Read the proposed proof below.
(a) Indicate which proof steps are incorrect, and describe why.
(b) Provide a corrected proof by contraposition.

Proposed proof by contraposition:
Step 1. Assume that n^{2} is odd. We will show that n is also odd.
Step 2. Since n^{2} is odd, we can say that $n^{2}-1$ is even.
Step 3. Factoring, we get that $(n+1)(n-1)$ is even.
Step 4. Since the product of any two even numbers is also even, we can conclude that both $n+1$ and $n-1$ are even.
Step 5. Since $n-1$ is even, n is odd.

Proof technique X : proof by intimidation

Proof technique Y : proof by bluffing

Gokul Swamy

@g_k_swamy
new proof technique just dropped: bluffing
tain a .801-approximation algorithm for MAX 3SAT. The best result that could be obtained previously, by combining the technique of $[5,6]$ and the bound of [3], was .7704 . (This is not mentioned explicitly anywhere but why would we lie. See also the .769-approximation algorithm in the paper of Ono, Hirata, and Asano [8].)

Finally, our reductions have implications for probabilistically checkable proof systems. Let $\mathrm{PCP}_{c, s}[\log , q]$ be the class of languages that admit membership proofs that can be checked by a probabilistic verifier that

